5 research outputs found

    Assesing demand in stochastic locational planning problems: An Artificial Intelligence approach for emergency service systems.

    Get PDF
    The efficiency of emergency service systems is measured in terms of their ability to deploy units and personnel in a timely and effective manner upon an event’s occurrence. Aiming to exploit stochastic demand, spatial tracing and location analysis of emergency incidents are examined through the utilisation of Artificial Intelligence in two interacting levels. Firstly, spatio-temporal point pattern of demand is analysed by a new genetic algorithm. The proposed genetic algorithm interrelates sequential events formulating moving events and as a result, every demand point pattern is correlated both to previous and following events. Secondly, the approach provides the ability to predict, by means of neural networks optimised by genetic algorithms, how the pattern of demand will evolve and thus location of supplying centres and/or vehicles can be optimally defined. Neural networks provide the basis for a spatio-temporal clustering of demand, definition of the relevant centres, formulation of possible future states of the system and finally, definition of locational strategies for the improvement of the provided services.Locational planning; Point Pattern Analysis; Spatial analysis; Artificial Intelligence

    Modeling urban evolution by identifying spatiotemporal patterns and applying methods of artificial intelligence.Case study: Athens, Greece.

    Get PDF
    While during the past decades, urban areas experience constant slow population growth, the spatial patterns they form, by means of their limits and borders, are rapidly changing in a complex way. Furthermore, urban areas continue to expand to the expense of "rural” intensifying urban sprawl. The main aim of this paper is the definition of the evolution of urban areas and more specifically, the specification of an urban model, which deals simultaneously with the modification of population and building use patterns. Classical theories define city geographic border, with the Aristotelian division of 0 or 1 and are called fiat geographic boundaries. But the edge of a city and the urbanization "degree" is something not easily distinguishable. Actually, the line that city ends and rural starts is vague. In this respect a synthetic spatio - temporal methodology is described which, through the adaptation of different computational methods aims to assist planners and decision makers to gain an insight in urban - rural transition. Fuzzy Logic and Neural Networks are recruited to provide a precise image of spatial entities, further exploited in a twofold way. First for analysis and interpretation of up - to - date urban evolution and second, for the formulation of a robust spatial simulation model, the theoretical background of which is that the spatial contiguity between members of the same or different groups is one of the key factors in their evolution. The paper finally presents the results of the model application in the prefecture of Attica in Greece, unveiling the role of the Athens Metropolitan Area to its current and future evolution, by illustrating maps of urban growth dynamics.urban growth; urban dynamics; neural networks; fuzzy logic; Greece; Athens

    Assesing demand in stochastic locational planning problems: An Artificial Intelligence approach for emergency service systems.

    Get PDF
    The efficiency of emergency service systems is measured in terms of their ability to deploy units and personnel in a timely and effective manner upon an event’s occurrence. Aiming to exploit stochastic demand, spatial tracing and location analysis of emergency incidents are examined through the utilisation of Artificial Intelligence in two interacting levels. Firstly, spatio-temporal point pattern of demand is analysed by a new genetic algorithm. The proposed genetic algorithm interrelates sequential events formulating moving events and as a result, every demand point pattern is correlated both to previous and following events. Secondly, the approach provides the ability to predict, by means of neural networks optimised by genetic algorithms, how the pattern of demand will evolve and thus location of supplying centres and/or vehicles can be optimally defined. Neural networks provide the basis for a spatio-temporal clustering of demand, definition of the relevant centres, formulation of possible future states of the system and finally, definition of locational strategies for the improvement of the provided services

    Assesing demand in stochastic locational planning problems: An Artificial Intelligence approach for emergency service systems.

    Get PDF
    The efficiency of emergency service systems is measured in terms of their ability to deploy units and personnel in a timely and effective manner upon an event’s occurrence. Aiming to exploit stochastic demand, spatial tracing and location analysis of emergency incidents are examined through the utilisation of Artificial Intelligence in two interacting levels. Firstly, spatio-temporal point pattern of demand is analysed by a new genetic algorithm. The proposed genetic algorithm interrelates sequential events formulating moving events and as a result, every demand point pattern is correlated both to previous and following events. Secondly, the approach provides the ability to predict, by means of neural networks optimised by genetic algorithms, how the pattern of demand will evolve and thus location of supplying centres and/or vehicles can be optimally defined. Neural networks provide the basis for a spatio-temporal clustering of demand, definition of the relevant centres, formulation of possible future states of the system and finally, definition of locational strategies for the improvement of the provided services

    Modeling urban evolution by identifying spatiotemporal patterns and applying methods of artificial intelligence.Case study: Athens, Greece.

    Get PDF
    While during the past decades, urban areas experience constant slow population growth, the spatial patterns they form, by means of their limits and borders, are rapidly changing in a complex way. Furthermore, urban areas continue to expand to the expense of "rural” intensifying urban sprawl. The main aim of this paper is the definition of the evolution of urban areas and more specifically, the specification of an urban model, which deals simultaneously with the modification of population and building use patterns. Classical theories define city geographic border, with the Aristotelian division of 0 or 1 and are called fiat geographic boundaries. But the edge of a city and the urbanization "degree" is something not easily distinguishable. Actually, the line that city ends and rural starts is vague. In this respect a synthetic spatio - temporal methodology is described which, through the adaptation of different computational methods aims to assist planners and decision makers to gain an insight in urban - rural transition. Fuzzy Logic and Neural Networks are recruited to provide a precise image of spatial entities, further exploited in a twofold way. First for analysis and interpretation of up - to - date urban evolution and second, for the formulation of a robust spatial simulation model, the theoretical background of which is that the spatial contiguity between members of the same or different groups is one of the key factors in their evolution. The paper finally presents the results of the model application in the prefecture of Attica in Greece, unveiling the role of the Athens Metropolitan Area to its current and future evolution, by illustrating maps of urban growth dynamics
    corecore